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Applications of the boundary integral equation method to real-
world problems often require that field values should be obtained
near boundary surfaces. A numerical difficulty is known to arise in
this situation if one attempts to evaluate near-boundary fields via
the conventional Green's formula. The present work addresses this
particular issue. Namely, a stable computationai scheme for both
fields and gradients in the near-boundary region has been formu-
lated. This approach starts with the conventional Green and Maue
representations of fields and gradients written inside and outside
of the defining volume. Then, a new set of integral representations
that have weaker kernet singularities is derived by canceling the
most singular terms between the conventional formulas of the two
sides. The principal contribution of this work is the explicit construc-
tion of the improved representations for the fields and gradients.
Also presented are several numerical results that demonstrate the
superiority of the new representations over the conventional
ones. © 1995 Acadamic Press, Inc.

1. INTRODUCTION

it has been recognized that the boundary element method
(BEM) has a significant potential to become a prominent numer-
ical technique to solve real-world physical problems. To ensure
broader acceptance, many efforts have been directed toward
reducing technical complications that arise when dealing with
the strong kernel singularity of the basic boundary integral
equation (BIE). One successful example can be found in the
well-known weak formulation of the BEM that basically elimi-
nates the strong singularity from the solution process. Yet,
progress needs to be made in another problem that arises also
from the strong kernel singularity. Namely, the conventional
Green's formula is known to yield unstable results when the
field is evaluvated in the vicinity of the boundary. Recently, a
method by cancellation was proposed to address this problem
[3], and this paper presents a detailed account of the method
and its generalization to field derivatives.

The BEM has its foundation in the celebrated formula of
Green |1]. However, the aforementioned near-boundary insta-
bility originates in Green’s formula itself, particularly in its
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strong kernal singularity that causes rapid changes across the
boundary. (See Ref. {3] or Section 2 below for details.} This
observation prompted a search for an altemative field represen-
tation that replaces Green's formula, while expressing fields
continuously near the surface. It was demonstrated [3] that such
an improved formula is attainable when the known arbitrariness
of Green’s formula [4-6] is exploited. There, it was also men-
tioned briefly that the same procedure applies to Maue’s gradi-
ent representation [2], resulting in weaker kernel singularities.
In Section 3 below, the derivations of these improved formulas
are given explicitly. We will show subsequently in Section 4
that the improved formulas in fact yield stable results when
applied to the near-boundary field calculation. These formulas
are more suitable for practical applications than the conven-
tional ones because they require no sophisticated element inte-
gration algorithms, thus simplifying software implementa-
tion.

The subsequent sections are organized as follows. Section 2
formulates the near-boundary singularity problem explicitly.
Both field and gradient representations are examined in a paral-
lel fashion, starting with Green’s and Maue’s formulas. In
passing, both the formulas are turned into weakly singular BIEs.
Most of the materials in Section 2 are of standard nature, except
that the weakly singular BIE (2.15) derived from the Maue
representation is less conventional. Next, our improved field and
gradient representations are derived in Section 3. The method
is based on cancellation between formulas written inside and
outside the defining region, and formulated in single-phase
problems. The numerical test results are presented in Section
4 to demonstrate the validity of our approach. In Section 5,
the relationship between the single-phase and multiple-phase
problems is pointed out. Finally, Section 6 contains conclud-
ing remarks.

2. STATEMENT OF THE
NEAR-BOUNDARY INSTABILITY PROBLEM

As a preliminary, we will formulate near-boundary field eval-
uation based on the conventional Green and Maue formulas,
in order to identify the origin of numerical instabilities. To be
explicit, let vs consider a scalar Helmholiz problem. Let ¢ be
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a scalar field in a finite volume V that satisfies the equation

VP + o= —J, (2.1
where J is a source. Also let S be the boundary surface of V,
i be the outward-directed surface normal vector, and u and v
denote the field and its normal derivative, 1.e.,

p=u, Vp=uv, (2.2)
on S. Then, the field and its gradient inside V can be expressed
in terms of # and v via Green’s and Maue’s formulas,

xegr = ¢ + [ dSI(=V.Gu + Gu, 2.3)

XV = (Voo + [ dsITG) X (i x Fu)

— BRGu + (-VGw], (2.4)
respectively, where G is the Green's function, ¢© is the source
term, and y is the characteristic function of the volume V. Ex-
plicitly,

G = G(¥p — %) = expiknfanr, r=|%— X, (2.5

oY = j AV G, 2.6

1 v
Xr= when P& _ 7.
0 1%

where V is the outside region of V. The explicit inclusion of
x in Egs. (2.3, 2.4) emphasizes that the representations are
valid and give vanishing results outside V. It should be remarked
that Eq. (2.4) is related to the direct derivative of (2.3),

and

VA

¥l + @ r = T + | dSIV, VO + (~¥Gw,
2.8

through Stckes’ theorem.

Two important special cases should be noted here: One is a
constant field ¢, ¢ = 1, in V. Since V2p = 0, Eq. (2.3) applies
to this field, resulting in a representation of ,

xp= js dS(—%.Gy), Go= V/dmr. 2.9)

Second, consider a field ¢ defined by the relation ¢ = &-%
where & is a given constant vector. Since V¢ = 0 also while
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% = a, Eq. (2.4) can be used to give another y representation
xrd = [SdS[(ﬁcn) X (7 X &)+ (=VGo)(i- ). (2.10)

The well-known weak formulation can be obtained from Eqs.
(2.3) and (2.9): Let Q be a point of S, and 4 be the value of
i at Q. Then, by subtracting Eq. (2.9) times u, from (2.3), one
finds that

_ ) i _
xelr = ) = ¢ + [ ast{ CRt
— (= V.GoXu — ug) + Gu].

Also, a similar (but less frequently used) procedure is applicable
to Egs. (2.4) and (2.10): Letting
d= (%)Q = (e’.u)g + Hovg (2.12)

in Eq. (2.10}, and subtracting it from (2.4), we find that

xel @) =~ Vedoh =¥l + [ dSHVG - Gol X (7 x V)
~ BiAGu + {~V(G — Gp}v)
+ fs dSI(VGy) X {7 X (Vu — Vo))
+ (=VGoo — - Ve, (2.13)

Setting P = ¢ in Eqgs. (2.11, 2.13), and taking the inner product
of (2.13) with #,, we obtain the weakly singular BIEs

0=ul + L ASH—Y,(G — Golu

— (~V.Go)(u ~ up) + Gl (2.14)
0=0P + 7p- L dSTIV(G — Go)} X (7 % Vir)

— BAGu + {—V(G - Gy}v]

+ Fip L dS[(VGy) X {7 X (Vu — V)

+ (=VGlv — 7 - Ve, (2.15)

which can be discretized straightforwardly by the conventional
shape-function technique. Among these two, Eq. (2.14) is well-
known, and relieves us from explicit Cauchy principal value
(CPV) evaluation. It is also known that there is a freedom of
choice between the BIEs (2.14, 15) in solving the unknowns,
which is useful to avoid fictitious frequency problems, when
necessary, by selecting the nondegenerate alternative. What is
unique here is that both of the BIEs, particularly Eq. (2.15),
are weakly singular.

Given an appropriate boundary condition on §, the unknown
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functions « and v can be determined by the BEM from either
Eq. (2.14) or (2.15). Let us assume that  and v have been thus
determined with sufficient accuracy. In principle, it should be
possible to obtain the field and its derivative everywhere in V
by evaluating Eqgs. (2.3, 2.4). In reality, however, this naive
method often fails in the vicinity of S with unstable numerical
results. (See Section 4 for some examples.) The origin of this
instability is the step-function behavior across S, exhibited ex-
plicitly in the representations (2.3, 2.4). Such a rapid behavior
is difficult for naive numerical methods to manage. Various
numerical techniques have been attempted to remedy the prob-
lem. Many of the existing methods require accurate element
integration near the collocation point P, Often, the accuracy
requirement is so severe that the methods become impractical
to apply.

Before proceeding to the next section, we note that it is
conceivable to use Egs. (2,11, 2,13) for near-surface calculation
without taking the limit P — . Particularly, the idea of using
(2.10) to derive (2.13) is useful, and in fact inherited by the
method formulated in Section 3, where Eq. (2.10) plays another
important role, We will show, however, that our formulas de-
rived in Section 3 are less complicated, and hence easier to
implement into computer codes than Eqgs. (2.11, 2.13).

3. IMPROVED FORMULAS
FOR SINGLE-PHASE PROBLEMS

This section covers our main results, namely, improved repre-
sentation of fields and derivatives. Given the ¢ problem in V
defined by Egs. (2.1, 2.2), let us introduce a complementary
scalar field ¥ that satisfies the equation

[V + Bl =0, (3.1
in the outside region V. We also impose a boundary condition
on ¢ so that

Pr=u 3.2)

on S. Green’s and Maue’s formulas hold parallel 1o Egs. (2.3,
2.4), ie.,

(U~ xe = — [ dSI=V,Gpu towl G3)
(1 = x)(Vi)r = — [ dSIFG) x (i x ¥u)
— BAGu + (-VG)wl, (3.4
where
Vap=w (32)

on S. As before, the standard BEM can determine w accurately
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after casting either (3.3) or (3.4) into a BIE. By adding Eq.
(3.3) to (2.3) and Eq. (3.4) to (2.4), we find the improved
representations

oo+ (L= X = &8 + [ dSGw —w),  (35)

xoF e + (1 = )y = (6% + [ aS-F60 — w),
(3.0)

for the fields and the derivatives, respectively.

Notice that Eqgs. (3.5, 3.6) behave smoother than the usual
representations (2.3, 2.4) in the vicinity of the boundary S.
For instance, the representation (3.5) is continuous across S§.
Similarly, Eq. (3.6) represents the tangential derivatives V¢
continuously. Discontinuity appears only in the normal compo-
nent, and it amounts to #,(v — w), when crossing § through
a point Q, where #, is the surface normal at Q. Therefore, the
numerical task has been reduced significantly to dealing with
this remaining discontinuity. Here, we use the same technique
as in deriving Eq. (2.13). Explicitly, setting @ equal to the
jump 7iglv — w)g in Eq. (2.10), and combining it with (3.6),
we finally derive the representation

xe(Vo) + (1 = x MV + figlu — wigh
= (V™) + Rglv — who + L dS[(-VG)w — w)

— (=VGo)(v - w)o] 3.7)

T L ASH—VGo)(1 — 7 - tg)
H(~VGy) X (7 X g

that is fully continuous across the point Q. To ensure the best
numerical result, the surface point @ should be chosen suffi-
ciently close to P.

It is Egs. (3.5, 3.7) that form the foundation of our method.
They replace the conventional formulas (2.3, 2.4), and provide
a computationally stable method to evaluate ¢ and V¢ in the
volume V, particularly in the vicinity of the surface S. The
numerical stability is the immediate consequence of their conti-
nuity across the boundary, in sharp contrast with Egs. (2.3, 2.4).

A few remarks should be made before concluding this see-
tion. As was discussed earlier [3], the proposed method requires
to solve the BIEs twice. This does not cause a serious computa-
tional problem, however. First, Eqgs. (2.3, 3.3), for instance,
yield a pair of matrix equations of the form

Alu] + B[] = —[¢),
(1 + A)[u] + B[w] =0,

(3.8)
3.9

that share ccefficient matrices. Hence, the extra task can be
made minimal by avoiding repetitions. Second, the kind of
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FIG. 1. Plets showing the results of the conventional method via Egs. {2.3, 2.4). Both the field « and its gradient e’cp were calculated as functions of the
radial distance from the sphere, and plotted in (A} and (B), respectively. The scattering angle is 90° measured from the beam direction. See the text for the
other parameter values. The solid lines indicate the exact results, and the symbaols are for the numerical results. In the curve labels such as {R, a}, RU| stands
for the real [imaginary] part, and n[¢] for the normal {tangential] component. The plots show that the conventional method gives unreliable results in the vicinity

of the surface.

problems that require off-surface field calculation is almost
always expensive by nature, requiring the computation at many
locations. Thus, the extra task of solving (3.9) adds up only to
a fraction of the overall computation, easily compensated by
the simplicity and accuracy of the field caleulation.

The second remark is that one could eliminate the use of
(2.10) by introducing another auxiliary field ¥ in V with the
alternative boundary condition

V.V =u, (3.10)
instead of (3.2). In this case, the additional unknown, i.e., the
function W on the boundary (= p), must be obtained from the
BIE. Once done, the analog of Eq. (3.6) would hold, namely,

xeVe) + (I = xp)(VI),
= @) + [ dSITG) X (i x Va—p) (36
— K AG(u — p)l.

In contrast to (3.6), Eq. (3.6") represents the normal component
continuously. The use of Egs. (3.5, 3.6, 3.6") for off-surface
calculations would therefore eliminate the use of (2.10) and
hence the on-surface point @ from the calculation. The author
believes, however, that the method using Egs. (3.5, 3.7) is
superior to this approach because the two auxiliary fields will
make the procedure more expensive computationally.

Third, Eqs. (3.5-7) yield ¢ and Vi values when the point
P is located outside V. Although spurious in the one-phase

problem, the analogous results in the two-phase problem are
of practical value. (See Sect. 5.)

4. VALIDATION BY NUMERICAL TESTS

The method proposed in Section 3 can be tested numerically,
and some of the example calculations are presented in this
section. The results of the field computation were reported
earlier [3] and are reproduced here for convenience, while the
gradient calculations are new results. The test problem is the
plane-wave scattering by a spherical body with a radius a, and
a boundary condition is imposed so that v = 0. The incident
field is given by the formula ¢™ = exp(ikz). Accurate solutions
for ¢ and ¢ are available by means of partial wave expansions
[71, and are referred to as “‘exact’” solutions below. The numeri-
cal calculations were performed in two ways for comparison:
one by the conventional method based on Eqgs. (2.3, 2.4), and
the other by the improved method with Eqgs. (3.5, 3.7). Other
than the different choices of the integral representations, the
same numerical algorithms were used throughout the entire
calculation to ensure meaningful comparison. For instance, the
usual isoparametric, quadrilateral elements were used, and nu-
merical integrals were performed by the Gaussian quadrature.
The nodal values of « and w were given by the exact solutions
for simplicity, although the standard BEM results can replace
them without compromising the accuracy. For actual computa-
tions, 64 quadratic elements were used to parametrize the
sphere, and the ka value was set to 2.

The near-boundary fields were calculated as functions of lift-
off distances from the surface S, and of the polar angle 6
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FIG. 2.  Plots similar to those in Fig. 1, except that they are plotted against the polar angle 8. (A) is for the field ¢ and (B) is for the gradient in the normal
direction, ¥,¢. The computations were performed slightly outside the sphere, with the lifi-off distance equal to 1% of the sphere radius. The {R, ¢} and {4, £}
results are omitted here. Again, the plots show the instability of the conventional calculation,

measured from the incident direction z. The first set of the
results was obtained from Eqs. (2.3, 2.4} by the naive method.
A representative subset of the numerical results, accompanied
by the exact ones, are plotted in Figs. 1 and 2. The plots exhibit
the typical instability discussed in Sect. 2. The second set of
the results was derived from Eqs. (3.5, 3.7) by the improved
method, and plotted in its entirety in Figs. 3 and 4 that should
be compared with Figs. 1 and 2, respectively. The comparisons
show clearly that our method is more stable near the boundary
surface than the conventional one. Moreover, the stability was
achieved without recourse to any special element integration
technique. This, therefore, demonstrates the superiority of the
representations (3.5, 3.7) over (2.3, 2.4) in expressing fields
and derivatives at off-surface locations.

5. IMPROVED FORMULAS FOR
MULTIPLE-PHASE PROBLEMS

In Section 3, the scope of our method is restricted to a single-
phase problem for a given field ¢. It is thus required to introduce
an artificial field  in the outside region V to complement .
In this section, we will relate the single-phase problem to the
multiple-phase problem where such a pair {¢, i} appears more
naturally [8]. Without loss of generality, let us consider a two-
phase problem where the entire space is separated into V and
V as before by the surface S. Suppose that there is a field ¢,
in V (or Region ““1”°) and a field ¢, in V (or Region “2""),
both satisfying

[V2 + kﬂ% = —J,

a=1,2. (5.1)

Let G, denote Green’s functions in V or V correspondingly.

Also suppese that boundary conditions are imposed across §
such that

Ao =g =u, WV = (Vo) =0, (5.2)

where A, and u, are given constants. Again, the unknown
functions # and v on § can be determined accurately by the
standard BEM. Notice that Eqgs. (5.1, 5.2) are completely analo-
gous to Eqgs. (2.1, 2.2, 3.1, 3.2), except that k; # k; in general.
It hence suffices to list the resulting improved formulas with-
out derivation,

xelAi@)p + (1 — xp)(Azpa)p
= Aol + Aol + [ as [{—Vn(G] — Glu

A Az
+ (_61 - _Gg) U:I,
M M2

AV — ﬁQUQf#I) + A1 = xRV — ﬁQUQ/I-Q}
= A efﬁiﬁz + A 6@(223 — (M p)iigg

(5.3)

- Al = Ay =
+ J ds {Vn V(Gl - Gg)}u - (’_1 VG] - "“g‘VGz v
$ L0l 25!

A A 2
(2]
M1 M2

‘Ai 'AZ 7"’ _ = =
+ (E - E) ve [ ASI—VGX1L = 7 )

+(=VGy) X (7 X iy, (5.4)
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FIG. 3. Plots showing the improved results via Eqgs. (3.5, 3.7). The same notation was used as in Fig. 1; for instance, the solid lines are for the exact
results and the dots for the numerical ones. The plots clearly demoenstrate the improvements on near-boundary field evaluation achieved by the proposed method.

which are analogous to Eqgs. (3.5) and (3.7), respectively. Equa-
tions (5.3, 5.4) share the desirable features with Eqgs. (3.5, 3.7)
in representing the fields and the derivatives smoothly. The
main differences is that Eqgs. (5.3, 5.4) always represent physical
quantities, both inside and outside, as remarked at the end of
Section 3.

It should be noted that the double-derivative term of (5.4)
can be optionally turned into the Maue form that involves
tangential u derivatives. Considering that the kernel singularity
is equally weak, the above form (5.4} is preferable because the
u derivative is absent,
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A numerical test of the representations (3.3, 5.4) against
exact solutions was carried out in the same manner as found
in Section 4 for the singie-phase problem. The numerical results
are similarly stable and accurate, and hence omitted here.

6. CONCLUDING REMARKS

This paper contends that, when applying the BEM, one
should always consider inside and outside problems in pairs,
irrespective of single-phase or multiple-phase problems. The
reason is that, by doing so, one finds the opportunity to cancel
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FIG.4. The improved resuits vs the polar angle. The plots show improvements over the conventional results of Fig. 2. Here, (B) includes all the componenis
of the gradient V. Again, the numerical results (indicated by the dots) coincide with the exact ones (the solid lines) everywhere, including the vicinity of the

surface (the lift-off is 1% of the radius).
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strong singularities between the basic equations on both sides.
Explicitly, the formulation given in Sections 2 and 3 demon-
strates that the pair of Green’s formulas, (2.3) and (3.3), and the
pair of Maue’s formulas, (2.4) and (3.4), can cancel singularities
between each other, resulting in the improved integral represen-
tations (3.5)—(3.7). Equations (3.5)—(3.7} are the main contribu-
tion of this paper, forming the foundation of our field evaluation
method at off-surface locations. Their validity has been demon-
strated by the example computations in Section 4, where it is
shown that even a naive element technique can yield smooth
and accurate results everywhere including the near-boundary
region. The generalization to multiple phase problems is found
in Section 5 as Egs. (5.3, 5.4).

Several remarks are in order. First, other than treating inside
and outside problems symmetrically, the present formulation
also treats Green's field representation and Maue’s gradient
representation in a unified fashion. As pointed out in Section
2, this pair results in a set of weakly singular BIEs that has
freedom to avoid fictitious frequency problems when necessary.
Moreaover, it was this systematic, symumnetrical treatment of the
basic equations that has allowed the discovery of the cancella-
tion mechanism.

Second, this work assumes that the on-surface variables are
obtained from the weak version of the BIEs, before off-surface
fields are calculated via Egs. (3.5, 3.7). The merit of this proce-
dure is that the basic formulas are all weakly singular, even
before discretization. The choice of the on-surface solution
method is not unique, however. A particularly interesting alter-
native will be the so-called indirect method [6], where the
combination (v — w) in Eqgs. (3.5, 3.6) is treated as the funda-
mental unknown and may be determined by the BIEs that follow
Egs. (3.5, 3.6) after the limit is taken. The combination of the
indirect BIE method with our off-surface calculation technique
may give the most effecient procedure, provided that the indi-
rect BIE can be solved properly.

Third, as explained at the end of Sections 2 and 3, respec-
tively, our off-surface formutas (3.5, 3.7) give the most econom-
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ical method among the alternatives such as Eqgs. (2.11, 2.13)
and the two-auxiliary-field approach of Section 3.

Last but not least, we restrict the scope of our discussion to
scalar Helmholtz problems throughout this paper. This restric-
tion, however, is only for simplicity, and implies no fundamen-
tal limitation as to where the method applies. In fact, the cancel-
lation method applies to a wider class of problems. It is
particularly straightforward to generalize the method to electro-
magnetism because the Stratton—Chu representation [9] is struc-
turally similar to the Maue representation. Generalization to
other problems such as elastodynamics and fluid dynamics
remains to be carried out in the future.
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